Política de Cookies

El sitio web de la Universidad de Cádiz utiliza cookies propias y de terceros para realizar análisis de uso y medición del tráfico, así como permitir el correcto funcionamiento en redes sociales, y de este modo poder mejorar su experiencia de navegación.

Si desea configurar las cookies, pulse el botón Personalizar Cookies. También puede acceder a la configuración de cookies en cualquier momento desde el enlace correspondiente en el pie de página.

Para obtener más información sobre las cookies puede consultar la Política de cookies del sitio web de la Universidad de Cádiz.

Personalización de Cookies

El sitio web de la Universidad de Cádiz utiliza cookies propias y de terceros para realizar análisis de uso y medición del tráfico, así como permitir el correcto funcionamiento en redes sociales, y de este modo poder mejorar su experiencia de navegación.

Para obtener más información sobre las cookies puede consultar la Política de cookies del sitio web de la Universidad de Cádiz. También puede acceder a la configuración de cookies en cualquier momento desde el enlace correspondiente en el pie de página.

A continuación podrá configurar las cookies del sitio web según su finalidad:

  • Análisis estadístico

    En este sitio se utilizan cookies de terceros (Google Analytics) que permiten cuantificar el número de usuarios de forma anónima (nunca se obtendrán datos personales que permitan identificar al usuario) y así poder analizar la utilización que hacen los usuarios del nuestro servicio, a fin de mejorar la experiencia de navegación y ofrecer nuestros contenidos de manera óptima.

  • Redes sociales

    En este sitio web se utilizan cookies de terceros que permiten el correcto funcionamiento de algunas redes sociales (principalmente Youtube y Twitter) sin utilizar ningún dato personal del usuario.

UniversidaddeCádiz
Functional polymer devices by high pressure processes for biomedical applications SCPolymers

Development of PLGA-PEDOT mixed polymeric scaffolds and their impregnation with natural extracts using supercritical CO2

Development of PLGA-PEDOT mixed polymeric scaffolds and their impregnation with natural extracts using supercritical CO2

CONGRESO: 16th International Conference on Chemical and Process Engineering

AUTORES: Valor D., Montes A., Pereyra C., Martinez De La Ossa E.

RESUMEN: Nowadays, one of the growing areas of research focused on the recovery of injured or lost tissues/organs of organisms is tissue engineering, in which significant advances have been made in the last ten years. From this point of view, biomaterials used in wound healing and tissue engineering are one of the components of increasing attention from the academic community. Among the biomaterials, polymers are the most commonly used for this type of application. It is imperative that polymeric devices used for tissue engineering demonstrate characteristics such as porosity, fibrosity, permeability and mechanical stability in order to successfully simulate the extracellular matrix. Scaffolds support structural attachment for cell adhesion and further tissue regeneration, fulfilling the aforementioned properties. They can also be used as
drug delivery systems close to target tissues, allowing extended release in time. Such systems can be combined with compounds that additionally enhance tissue regeneration. There are advances in the impregnation of bioactive substances with antioxidant, antimicrobial or anti-inflammatory properties as active substances or plant extracts containing a multitude of polyphenols. On the other hand, the properties
that may be lacking in the biomaterials typically used can also be supplemented by the addition or impregnation of other polymers that provide these properties, such as the conductivity needed to be compatible with cells.
The objective of this research is to develop conjugated systems with conductive (PEDOT) and nonconductive polymers (PLGA) for use in tissue repair and drug delivery systems. Moreover, the incorporation of bioactive compounds into the polymeric matrix has been examined using an ethanolic mango leaves extract, which have been studied in depth by the research group, mainly due to its strong antioxidant power. To carry out this process, supercritical technology has been used, more specifically the processes of foaming and supercritical impregnation, both in a single step (Moghadam et al., 2017). The polymer mixture, together with the extract, was kept in contact with the CO2 in a supercritical state (different pressure and temperature conditions were studied) for a selected time to allow it to penetrate the polymer and produce the plasticizing effect. The system is then depressurized at a controlled rate, which triggers the foaming/impregnation process (Figure 1). For this purpose, authors evaluated the influence of the main process variables, such as pressure, temperature, polymer rates or impregnation/foaming time on the polymer expansion factor, conductivity, mechanical strength, textural properties, total impregnated compounds and its antioxidants properties of the formed scaffolds. In addition, the release profiles of the extract in PBS were studied. Systems with remarkable volume growth are obtained, involving variable mechanical properties, conductivity and porosity, where the impregnation of the bioactive compounds is satisfactory. Delayed releases of the bioactive compounds of more than 20 days were also achieved